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SUMMARY

This paper presents recent developments in advanced analysis methods for the computation of stress

intensity factors and the J-integral under conditions of small scale yielding in structural panels with multi-

site damage. The method of solution is based on the p-version of the finite element method. Its implemen-

tation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction

method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic

analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The

elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion.

The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating

from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experi-

mental results are available for the panel. The plasticity analysis provided the sanae limit load as the exper-

imentally determined load. The results of elastic-plastic analysis were compared with the results of linear

elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of

net-section yielding was determined also. The results show that crack growth rate is accelerated by the

presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken

into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-

plastic material model is compared against the Ramberg-Osgood model.

INTRODUCTION

Reliable stress intensity factor computation of cracked structural components is of major importance in

modern design of aircraft structures where requirements for residual strength and fatigue crack propagation

must be met. In this paper the problem of computing the stress intensity factors for a structural panel with

multi-site damage, with guarantee of reliability, is discussed. This work focuses on the accuracy and reli-

ability of the numerical solution of a proposed mathematical model and on the influence that different mod-

eling assumptions may have on the results of the analysis. Two kinds of error are important in this case:

1. The differences between the exact solution of the mathematical problem formulated to represent a

physical system or process and its numerical approximation are called errors of discretization. Is it

possible to guarantee that the error of discretization is small?
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2. The differences betweenthe exact solution of the mathematical problem formulated to represent a

physical system and the actual response or behavior of the physical system are called errors of ideali-

zation or modeling errors. How does incorporating plasticity in the analysis affect the stress intensity
factors?

In some cases the two errors, the errors of discretization and modeling, may partially cancel one another.

Therefore it is important to verify by means other than the experiment itself, that the numerical solution is

close to the exact solution of the model. Only then is it possible to investigate whether the errors of ideali-

zation are large or small by making comparisons with experimental observations. The efficient and reliable

control of numerical errors, achieved by the use of a superconvergent method for the computation of the

stress intensity factors, makes it feasible to investigate the sensitivity of crack extension to alternative mod-

eling decisions.

In this paper, the effect of plasticity on the values of the fracture mechanics parameters is investigated.

First, the finite element implementation is discussed; and second the method is illustrated with the integrity

assessment of a row of fastener holes with multi-site damage, for which experimental results are available.

FINITE ELEMENT IMPLEMENTATION

Choice of an Extension Process

In the finite element method the control of the errors of discretization can be achieved by mesh refine-

ment (h-extension), by increasing the polynomial degree of elements (p-extension), or a combination of

both (hp-extension).

The size of a finite element is the diameter of the smallest circle (or sphere) that contains the element.

This diameter is denoted by h and the diameter of the largest finite element in the mesh is denoted by hma x.

h-Extension involves letting hmax _ 0. Alternatively, we can hold the number of elements constant and

increase the polynomial degree of elements. The polynomial degree of elements is a vector p. p-Extension

involves letting the smallest polynomial degree Pm/n_ 0". In hp-extensions mesh refinement is combined

with an increase of the polynomial degree of elements. In these processes the number of equations that has

to be solved, the number of degrees of freedom, is progressively increased, hence the name 'extension'.

Note that h- and p-extensions can be viewed as special cases of hp-extension, which is the general discreti-

zation strategy of the finite element method.

An important question is: "Which is the most efficient method of extension with respect to reducing dis-

cretization errors?" This question can be answered on the basis of a simple classification of the exact solu-

tion of the problem one wishes to solve. The exact solutions (UEx) have been classified into three main

categories:

Category A: Uex is analytic. A function is analytic at a point if it can be expanded into a Taylor series

about that point on the entire solution domain, including the boundaries of the solution domain. Alterna-

tively, the domain can be divided into subdomains and uEx is analytic on each subdomain, including the

boundary of each subdomain. The finite element mesh is so constructed that the boundaries of the subdo-
mains are coincident with element boundaries.

Category B: uex is analytic on the entire domain, including the boundaries, with the exception of a finite

number of points (in three dimensions UEx needs not be analytic along a finite number of lines). The

mesh is so constructed that the points where UEx is not analytic are nodal points (in three dimensions the
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lines where UEx is not analytic are coincident with element edges). An example of problems in Cate-

gory B is a cracked elastic body. The crack tip is a singular point.

Category C: Problems for which the exact solution is neither in Category A nor in Category B are in

Category C.

Most problems in mechanical and structural design belong in either Category A or Category B. Most

problems in fluid dynamics belong in Category C. Knowing the classification of a problem, it is possible

to compare h-, p- and hp-extensions on the basis of rate of convergence, that is, the rate of change of the

error measured in energy norm with respect to the number of degrees of freedom. For problems in Cate-

gory A and B the discretization errors are most efficiently controlled by p-extension. Designing a mesh

such that when the polynomial degree of elements is uniformly increased then the discretization error

decreases exponentially until the required degree of accuracy has been reached ;usually it involves grading

the mesh in geometric progression in the vicinity of singular points (ref. 1).

The Trunk and Product Spaces

By definition, the standard quadrilateral element _"_(q) is the set of points (_,rl) which satisfy 1_1< 1,
s

Irll 1, see Figure 1. The trunk space of degree p is de_ned as the set of polynomials which can be

(-:,:) 0,:)

(-1,-11 (1,-1)

Figure 1. The standard quadrilateral element _q).

expressed as linear combinations of _i rlj, i, j =0,1,...p; i +j <p and supplemented by the monomial term

TI for p=l, and the monomial terms _P rl, _ rl p for p>2. For example, forp=4 the trunk space includes all

polynomials up to degree 4, plus two fifth order polynomials. Th.e product space of degree p is the set of

polynomials which can be expressed as linear combinations of _11-1J, i,j =0,1 ,...p. For example, for p=4 the

product space includes all polynomials up to degree 8.

The answer to the question: "Which space should be used in a given application?" depends on the

accuracy requirements. The following points should be taken into consideration:

1. The number of degrees of freedom increases much more rapidly with respect to p when the product

space is used. For example, in the case of p=8 there are 47 degrees of freedom per field for the trunk

space, and 81 degrees of freedom per field for the product space.

2. For a given polynomial degree the error, measured in energy norm, is always smaller for the product

space than for the trunk space. This is because the trunk space is a subset of the product space.

3. For a given number of degrees of freedom the error for the product space, measured in energy norm,

may be smaller or larger than the error for the trunk space. There appears to be no way of predicting

which space performs better for specific cases.
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4. For static analyses,work performed by the computer increasesmore slowly with respectto increas-
ing p for the product spacethan for the trunk space.This is becausein thecaseof the product space
the increaseaffects the internal modesonly andthosemodesare eliminated by the solver locally, i.e.

no assembly is involved and the front width is unaffected.

In our implementation both the trunk and product spaces are available for quadrilateral elements, and

the polynomial degree can be increased up to p=8.

Elastic-Plastic Analysis

The implementation of material nonlinearities wiu'fin the framework of the p-version was considered

an essential feature in the assessment of modeling assumptions. The elastic-plastic analysis is based on

the von Mises yield criterion and tile deformation theory of plasticity. The purpose and scope of this

implementation are as follows (for further details see ref. 2):

1. Realistic mathematical models of real physical systems must have a capability to provide initial esti-

mates for the effects of nonlinearities at a low computational cost. The deformation theory of plas-

ticity serves this purpose well for a large class of practical problems.

2. The effects of a single overload event on structures made of ductile materials are of substantial prac-

tical importance. Such effects can be well represented by mathematical models based on the defor-

mation theory of plasticity, provided that the plastic flow is contained, i.e., the plastic zone is

surrounded by elastic material.

3. The propagation of cracks in strain-hardening materials is generally correlated with the J-integral.

The J-integral is based on the deformation theory of plasticity.

4. An important feature of the linear implementation is that engineering data can be conveniently

extracted from finite element solutions in the post-solution phase. The deformation theory of plastic-

ity makes it feasible to extend this into the elastic-plastic regime because the data storage require-

ments are small.

5. The p-version is not susceptible to Poisson ratio locking and hence correct limit loads are obtained.

In the conventional (h-version) locking occurs when the displacement formulation is used. For this

reason alternative formulations, generally known as mixed methods, must be employed.

Elastic-Plastic Material Properties

An important modeling assumption is the type of stress-strain law used for the elastic-plastic analysis.

Four types of stress-strain relationships have been implemented:

Ramberg-Osgood: Material characterized by four parameters (Figure 2): The modulus of elasticity (E),

Poisson's ratio (a)), the stress (SToE) , which is the stress corresponding to the intersection of the stress-

strain curve with a line which passes through the origin and has the slope of 0.70E, and an exponent n in
the expression:

S 7 0 E t:_ n

e -- E+---g--(S--_O e) (1)
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Figure 2. The Ramberg-Osgood stress-strain curve.

Typical values of n range between 4 and 90. Fractional values are permitted for n. In the limit as n --4 0% an

elastic-perfectly plastic material behavior is approached.

Elastoplastie: Elastic-perfectly plastic material characterized by E, _ and the yield stress Sy.

Bilinear: Linear-elastic, linear strain hardening material characterized by E, "o, Sy and the tangent modulus
E t which characterizes strain hardening.

5-Parameter: Material characterized by two linear segments joined by a cubic spline.

Solution Algorithm

The following is an outline of the solution procedure implemented for two-dimensional elastic-plastic

problems based on the deformation theory of plasticity. The procedure is known as direct integration. The

iteration number is represented by a superscript in brackets:

1. Obtain a linear solution for the problem. Ensure that the relative error in energy norm is small, cer-

tainly under 5%, preferably under 1%.

2. Compute the total equivalent strain E in each Gauss point. The elastic equivalent strain is defined as:

ge _ 4_ _(e_ el) 2 (e_ el) 2 (e_ e_)
2(1 +x)) -- + -- + --

and the plastic equivalent strain is given as:

2 (2)

where x) is Poisson's ratio, El, 82, 83 are the principal strains. The total equivalent strain is:

= Ee+g:p.

(3)

(4)

3. Using (E)(Ic), compute the secant modulus Es (It) at each Gauss point from the one-dimensional stress-

strain curve.

4. In each Gauss point for which e > 8y (the uniaxial strain at the onset of yielding), determine the elastic

plastic material stiffness matrix using Es (k). Recompute the stiffness matrices for those elements for

which e > 8y in one or more Gauss points, and obtain a new finite element solution UFE (k+l).
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5. Using Es(k) and UFE (k+l), compute the strain and stress tensor components and the equivalent stress at

each Gauss point. Using expressions (2)-(4), compute the total equivalent strain at each Gauss point

(_)(k+l). If the equivalent stress _(k+l) in each Gauss point satisfies:

1)l _<xl (5)

then stop, else using (_)(k+l), compute Es (k+l), increment k to k+l and return to step 3. In (5), _r is the

reference equivalent stress from the uniaxial stress-strain curve corresponding to (_)(k+l), and 1; is the

pre-specified tolerance. The equivalent stress is computed based on the principal stresses as follows:

4_/(t_l4 t_2) 2 + 2 2 (6)- - 2 - + •

Fracture Mechanics Parameters

In the neighborhood of the crack tip in an elastic body, the solution becomes singular and the stress val-

ues go to infinity at the crack tip. Whether or not a crack will propagate, and at what rate, depends on the

energy available to drive crack extension. In linear-elastic fracture mechanics the stress intensity factors are

a measure of the stress singularity at the crack tip. They depend on the geometry of the body, the configura-

tion of the crack, the boundary conditions and the loading. In the elastic-plastic regime, the J-integral has

been increasingly used to characterize crack initiation and crack growth. J can be interpreted as the energy

release rate, and in the linear-elastic case J=G (the energy release rate).

Stress Intensity Factors

The computation of Mode I and II stress intensity factors for linear elastic fracture mechanics was imple-

mented using the Contour Integral Method, as described in ref. 1:

K I ---- 2_a_l, ) KII = 2_a_ 2) (7)

where A _m_, rn = 1, 2, is the first term in the asymptotic expansion of the solution in the neighborhood of

the crack tip for modes I and II respectively.

Let Fp be a circle of radius p centered on the crack tip (Figure 3), and assume that p is sufficiently close
to the crack tip. Then we can write:

W (m)
a_ m) _ f (W (m) TFE-- UFET )ds (8)

F
9

where W (m) is an extraction function, TFE is the traction vector along 1-"9 computed from the finite element

solution UFE, and T w is the traction vector along 1-'p due to the extraction function.

The J-integral

The J-integral provides a mean to determine an energy release rate for cases where plasticity effects are

not negligible. In the case of plane stress and plane strain the J-integral is defined by:

6

i /iii _i_i__ i _'' i!iii _i!_iii_



J= f ( wgy - T_xds ) (9)

F
P

where Fp is a contour around the crack tip, W is the strain energy density:
£

W -" W(x, y) -- _foijdeij. (10)

0

T is the traction vector (with components T x, Ty) along Fp, u is the displacement vector (u x, Uy) and ds is

an element of Fp. The coordinate system is located such that the origin is in the crack tip, the x-direction is

parallel to the crack face (see Figure 3).

y

Vy

p Tx

b.
v

x

Figure 3. Path around the crack tip.

If the integration is performed along a circular path of radius p centered at the crack tip, equation (9) can
be written as:

t_ 3u x 3Uy
d = ] (Wcos0- r_ x -- r_-_x ) pd0. (11)

--Tg

The J-integral can be computed for linear and nonlinear isotropic or orthotropic materials. For the case

of elastic-plastic materials, the integration path should be selected in such a way that it does not cut through

the plastic zone around the crack tip. In the plastic region the strain energy density (W) is not defined.

EXAMPLE PROBLEM

Problem Description

The model problem consists of a 2024-T3 aluminum alloy plate with six equally spaced holes and a

crack emanating from each hole. The cracks are of different sizes and the panel is subjected to a remote ten-

sile load. The panel was selected from ref. 3, and corres _onds to an MSD test coupon for constant ampli-



tudecrack growth testing. Numerical and experimental crack growth dataare available for thepanel.
Figure 4 showsthe configuration of thepanel for the exampleproblem.

The objective of the analysisis to compute the stressintensity factors andthe J-integral for eachcrackat
different stagesduring crack propagation.The resultsarecomparedwith the experimentalvalues. Theelas-
tic-plastic analysis is performed using two different stress-strainlaws: Ramberg-Osgoodand elastic-ide-
ally-plastic. The length of eachcrack (measuredfrom the edgeof the hole) for thefour casesanalyzedis

Material 2024-T3:
Sy= 330 MPa
E= 71 GPa
a)=0.33

Dimensions (mm):
e=12.5
s=15.0
D=5.0
t=2.5 (thickness)
W=100.0
L=300.0

Loading:
o = 96.5 MPa

6 5 4 3 2 1

O-- a C)-- O-

D

W

/

Figure 4. Panel configuration for example problem.

w

L

shown in Table 1. Case 1 corresponds to the initial crack length values; Case 2 represents the crack lengths

after 6000 loading cycles; Case 3 after 12000 cycles; and Case 4 represents the crack lengths at failure

(-13500 cycles).

Table 1: Crack Length (mm) for Each Case

Case a 1 a2 a3 a 4 a 5 a6

1 3.00 2.08 2.38 2.47 2.00 2.03

2 4.35 3.48 3.70 3.70 3.26 3.26

3 6.74 5.87 6.09 5.87 5.09 4.78

4 7.78 7.90 7.90 6.89 5.78 5.11
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Discretization

In designing the finite elementmeshand selectingthe otherdiscretization parameters,the smoothnessof
theexact solution of the mathematicalmodel representingthe physical systemshouldbeconsidered.For
theexampleproblem, the following modeling aspectsarerelevant:

1.Two-dimensional (planestress)analysisis consideredappropriatefor this case.

2. Due to symmetry conditions, only half of the panelneedsto be analyzed.

3. Elastic-plastic material propertiesareusedto assesstheinfluence of cracktip plasticity on thefracture
mechanicsparameters.

The solution of the mathematicalmodel just describedis smooth inside the domain and on the bound-
aries,exceptat thecrack tips where the stressesareunboundedin the linear case.For the nonlinearcase
when the material is elastic-perfectlyplastic, the stressesare finite but the strainsaresingular at the crack
tips. The design of the finite elementmeshshould accountfor the nature of the exact solution. Geometri-
cally gradedmeshestoward the singularpoints areknown to beoptimal in conjunction with p-extensionfor
problems of this type. However, thedesignof geometrically gradedmeshesfor domainswith multiple
cracksemanatingfrom holeswith sizescomparableto thehole diameters is very cumbersomeandin many
casesimpractical. For that reason,the useof very simple meshescombined with high order elements(prod-
uct space)is selected.This strategyhas-beentestedand documentedin refs. 3 and4.

The finite elementmeshconsisting of 38quadrilateral elementsis shown in Figure 5. Eachcrack has
beendefinedparametrically, sothat the samemeshcould beusedfor the four casesshown in Table 1by
adjusting the crack length parameters.Note that no meshrefinementaround the crack tips hasbeenused.
Due to symmetry, only half the panelwasdiscretized.

Two elastic-plastic stress-strainrelationswere investigated.The Ramberg-Osgoodmaterial character-
ized by: E=71 GPa, a_---0.33, $70E=320 MPa, n=12, and the elastic-perfectly plastic material characterized

by Sy=330 MPa. The linear solution was computed for the product space and polynomial degree ranging
from 1 to 8. Four nonlinear solutions were computed for each case in order to obtain an assessment of the

discretization error for the nonlinear analysis. The linear runs corresponding to p-levels 5, 6, 7 and 8 were

used to start the nonlinear iterations. The number of iterations required to complete any given analysis was

based on a specified tolerance of 1.0% (see Eq. 5).

Results

Discretization Errors

For each linear analysis, the estimated relative error in energy norm was computed from the eight avail-

able solutionso Table 2 shows a typical result which corresponds to Case 1. The reported rate of conver-

gence is typical for the p-extension in the case of category B type problems without geometrically graded

meshes towards the singular points. For cases 1, 2 and 3, the estimated relative error in energy norm corre-

sponding to p-level=5 and above was less than 5%.
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x, iil

Figure 5. Finite element mesh.

Table 2: Estimated Relative Error in Energy Norm. Linear Solution for Case 1

Potential Rate of Estimated
p-Level DOF

Energy [N mm] Convergence % Error

1 117 -2490.4413 0.t30 10.23

2 392 -2504.4379 0.31 7.02

3 819 -2510.8236 0.50 4.86

4 1398 -2513.3046 0.5I 3.71

5 2129 -2514.6060 0.56 2.93

6 3012 -2515.3562 0.62 2.37

7 4047 -2515.7'996 0._ 1.96

8 5234 -2516.0703 0._ 1.66

The fracture mechanics parameters were computed for the available sequence of linear and nonlinear

solutions: Eight runs for each linear case mad 4 runs for each nonlinear case. Convergence of the extracted

results was assessed in each case. Typical convergence data are shown in Table 3 for the linear and nonlin-

ear fracture mechanics parameters of Case 2, Crack I.

Fracture Mechanics Parameters

Tables 4 to 6 show the values of the fracture mechanics parameters (FMP) for each crack and for cases 1

to 3 respectively. They include the stress intensity factor (KI), the J-integral (Je) computed from the linear

solution and the values of the J-integral computed from the elastic-plastic solution for the Ramberg-Osgood

material (j}O) and the elastic-perfectly plastic material (jEP). The relative difference between the elastic

10
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and plastic (Ramberg-Osgood) values of J is also included. All values included in the tables correspond to
the linear or nonlinear solutions for p-level=8.

Table 3: Convergence Data for Case 2, Crack 1

p-Level K I [MPa m lf2] Je [N m -1] jpRO [N m -1] jpEP [N m "l]

1 11.26 1148 ......

2 14.43 2567 ......

3 13.84 2647 ......

4 13.41 2531 ......

5 13.90 2681 2737 2683

6 14.28 2822 2881 2825

7 14.22 2827 2925 2859

8 14.15 2815 2927 2864

Table 4: FMP for Case 1 (N=0)

Parameter
Value of the Parameter for Crack #

1 2 3 4 5 6

KI[MPam 1/2] 12.65 12.40 12.49 12.49 12.11 11.95

Je[Nm'l] ' 2242 2151 2186 2185 2059 2000

jpRO[Nm-1] 2276 2200 2236 2231 2097 2031

jpEP[Nm'I] 2256 2176 2219 2218 2084 2015

(jpRO-Je)/J e [%] 1.8 2.3 2.3 1.8 1.9 1.5

Table 5: FMP for Case 2 (N=6000)

Value of the Parameter for Crack #
Parame_r

1 2 3 4 5 6

KI[MPam 1/2] 14.15 14.20 14.17 14.04 13.62 13.24

Je[Nm -1] 2815 2817 2818 2769 2592 2448

jpRO[Nm -1] 2927 2905 2900 2843 2653 2491

jpEP[Nm'I] 2864 2840 2837 2785 2609 2458

(jpRO-Je)/J e [%] 4.3 3.3 2.8 2.5 2.3 1.6

11



Table 6: FMP for Case3 (N=12000)

Value of the Parameterfor Crack#
Parameter

1 2 3 4 5 6

KI [MPa mlp] 18.78 19.26 19.04 18.21 16.67 15.39

Je [N m -1] 4885 5152 5019 4604 3893 3325

jpRO [N m -1] 6292 7057 6681 5786 4504 3603

jpEP IN m -1] 5585 6072 5771 5151 4196 3497

28.6 37.1 33.1 25.9 15.7 8.1(jpRO-Je)/Je [%]

These results clearly indicate that the stress intensity factors are not substantially affected by crack tip

plasticity until the number of cycles is sufficiently high (near the end of the life of the panel). This is in

agreement with the experimental observation: Towards the end of the life, the actual fatigue crack propaga.

tion rate is larger than that predicted by using the linear stress intensity factors. Tables 7 to 9 show a com-

parison of the experimental crack propagation rate (ref. 3) with those computed from the expression:

da
-- C (AK)m (12)

dN

for the linear solution and from the expression:

da _ m

dN -- C (ql'-E. &lp) (13)

for the nonlinear solution. C and m are material constants (C=4.15 x 10 -8, m=2.2 when zXK is given in ksi,

and da/dN is given in inch/cycle). The values of Jp for the Ramberg-Osgood (R-O) and for the elastic-per-
fectly-plastic material (E-P) are considered in Eq. 13.

Table 7: Fatigue Crack Propagation Rates for Case 1 (N=0)

Propagation Rate

given by 2

da)dN [10 4 mm/cycle] for Crack #

3

Eq. 12 2.28 2.18 2.21

Eq. 13(R-O) 2.30 2.21 2.25

Eq. 13 (E-P) 2.28 2.19 2.23

Experimental 2.10 2.20 2.16

.

4 5 6

2.21 2.07 2.01

2.25 2.10 2.03

2.23 2.09 2.01

2.00 1.75 1.80
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Table 8: Fatigue Crack Propagation Rates for Case 2 (N=6000)

Propagation Rate

given by

Eq. 12

Eq. 13(R-O)

Eq. 13 (E-P)

Experimental

da/dN [10 4 mm/cycle] for Crack #

al

2,92

3.03

2.96

2.91

a2

2.93

3.01

2.93

2.69

a3
i

2.92

3.00

2.93

2.92

a4 a6

2.86 2.49

2.94 2.72 2.54

2.87 2.69 2.50

2.64 2.52 2.20

Table 9: Fatigue Crack Propagation Rates for Case 3 (N=12000)

Propagation Rate

given by

Eq. 12

Eq. 13 (R-O)

Eq. 13 (E-P)

Experimental

al

5.43

a2

5.74

da/dN [10 4 ram/cycle] for Crack #

a3

5.60

7.03 7.98 7.51

6.17 6.76 6.40

7112 8.95 7.56

a4 a5

6.40

a6

5.30

5.08 4.18 3.49

6.41 4.87 3.81

5.64 4.50 3.69

3.47

The Plastic Zone Size

Figure 6 shows the extent of the plastic zone at each crack tip for cases 1, 2 and 3 for the Ramberg-

Osgood stress-strain law. The plastic zone is the set of all points for which the total equivalent strain is

greater than or equal to the uniaxial yield strain e > ey, where ey--Sy/E.
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Figure 6. Plastic zone sizes for Ramberg-Osgood material.
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Limit Load

The limit load was computed for the elastic-perfectly plastic material, by imposing a uniform normal

displacement along the top edge of the panel, and computing the stress resultant along that edge. The crack

configuration of Case 4 (failure condition) was used, and a nonlinear solution was obtained for each value

of the imposed displacement. The results are shown in Figure 7. The limit load for this problem can be esti-
mated as:

6

i=1

Load

(kN)

20

10

0

|nHIn.N.n|l|.n0e.l..._sle.uaea0e|l gl_u|...l.e m an01 _ i m. .|.| e 00e.n...|.

./ ......... Estimated Limit

_ _ _ Displacement

0 0.10 0.20 0.30 0.40 (ram)

Figure 7: Load-displacement relation for case 4, elastic-perfectly plastic material.

Time Requirements

One important consideration in the utilization of an analysis tool incorporating advanced methodology is

the amount of time required to analyze a problem of substantial complexity like the one discussed in this

paper. "I'o address this issue, we report in this Section the amount of time spent in the linear and nonlinear

analyses. The computer runs were performed on a HP 9000/715 workstation using the finite element code

STRESS CHECKI developed by the authors. The total time is the sum of the time required to perform three

main activities: (1) preparation of input data, (2) execution of analyses, and (3) extraction of results.

The preparation of input data consists of the description of the solution domain, the design of the finite

element mesh, the specification of the material properties, and the assignment of the boundary conditions

(loads and constraints). This involves almost exclusively engineering time which will depend on the level

of training of the analyst, and on the characteristics of the software tool used. The preparation of input data

for the problem shown in Figure 5 required approximately 20 minutes of wall clock time. Since the crack
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lengths were defined in parametric form, and since the same description can be used to perform linear and

nonlinear analyses, only one mesh was used for all cases analyzed.

The execution time depends on the analysis type. To obtain a sequence of linear solutions (p-level=l to

8), 1.5 minutes of CPU time were required for each case. For the nonlinear solutions, the CPU time

depends on the number of iterations necessary to achieve the desired tolerance level (see Eq. 5), which in

turn depends on the amount of plasticity associated with the solution. To obtain a sequence of nonlinear

solutions (p-level=5 to 8) for the crack configuration of case 1, 9.5 minutes of CPU were required; for case

2, 10.4 minutes of CPU; for case 3, 18.0 minutes of CPU.

The extraction of the results (the fracture mechanics parameters) involves mostly analyst's time. To

compute the six crack tip stress intensity factors and J-integral (both elastic and plastic) for each case ana-

lyzed, about 30 minutes of wall clock time were required.

In summary, a complete analysis of a multiple-site damage panel for one crack configuration, including

preparation of input data, execution of a sequence of linear and nonlinear solutions, and extraction of the

data of interest, can be performed in about 1.5 hours of wall clock time.

The Importance of Controlling Discretization Errors

Intrinsic control of discretization errors by finite element programs is very important for properly corre-

lating computed information with experimentally observed data and for using computed data in engineer-

ing decisions which cannot be measured directly, and/or exploring a range of loadings and constraint

conditions, not covered by the experiment.

To illustrate this point, let ¢I)ex e be some experimental information, for example a measured displace-

ment or strain, _uoo the same information predicted by a mathematical model, for example the equations

of elasticity together with the appropriate material properties, boundary conditions and loading data; _FEA

the same information predicted by a finite element approximation of the mathematical model. _uoo is gen-

erally not known, nevertheless the purpose of an experiment is to determine whether the mathematical

model correctly describes the physical system being modeled, that is, whether Ouon is sufficiently close to

cb ex e. Writing:

I 'Ex,- + + I% A-  'Mool (14)

it is seen that if the quality of a mathematical model is to be assured then it is necessary to ensure that

I_rE._ - _uool is not larger, and preferably much smaller, than [O_xe- _r_,l , which is known from mea-

surement and computation. The quality control procedures of any finite element program should make it

possible to ascertain that I_F_A-_uoo[ is smaller than I_xe-_rEA[ "

Unfortunately, there are many examples in industrial practice where close correlation with experimental

results is achieved through skillful manipulation of the discretization parameters. The sensitivity of the

approximate solution to discretization parameters is a strong indication that the numerical error is large, or

the model is improperly defined. In the absence of intrinsic procedures designed for controlling approxima-

tion errors, it is possible to correlate computed data with experimental observations through near cancella-

tion of two large errors:

_exe - _t_eA = Oext, - Ouoo + _uoo - OrEa = 0 (15)
• y J • _ , ,,,_

:LM _-t.M
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where M is some big number. Such models are unreliable and can be very misleading when the model is

used for drawing general conclusions from experimental information.

CONCLUSIONS H

<i_i_
iii:ili

Control of errors of discretization and modeling can be achieved ff the analysis tools provide sufficient

flexibility and are easy to use. It is also required that complex problems, both linear and nonlinear, be

solved in hours instead of days.

Advanced analysis methods for the computation of stress intensity factors and the J-integral under con-

ditions of small scale plasticity have been implemented within the framework of the p-version of the finite

element method. The hnaplementafion makes it possible for practicing engineers to assess damage in struc-
tural components under elastic-plastic conditions with guaranteed reliability. The key elements which make

this implementation unique can be summarized as follows: !iil

1. The use of the product space and superconvergent extraction for the stress intensity factors allows the

use of very s_nple (coarse) meshes to obtain extremely reliable results for the linear elastic fracture

mechanics parameters.

2. The use of the deformation theory of plasticity with the yon Mises yield criterion and the high-order

finite elements (product space) makes it possible to use the same coarse meshes for the elastic-plastic

analysis. Plastic zone sizes, J-integrals and limit loads can be easily and reliably computed from the
finite element solutions.

3. The availability of various representations for nonlinear material makes it possible to assess the influ-
ence of different stress-strain laws in the results.

4. The possibility of using spring boundary conditions, beating loads, and precise geometric representa-

tions allows for closer representation of actual problems.

The application of these techniques to a multi-site damage panel clearly demonstrates that the investigation

of different modeling assumptions can be accomplished in a reasonable amount of time, and that the results

obtained can be used to assess the influence of plasticity on the residual strength of the panel.
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